Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 382: 8-20, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38211667

RESUMO

Photoacoustic imaging(PAI) is a widely developing imaging modality that has seen tremendous evolvement in the last decade. PAI has gained the upper hand in the imaging field as it takes advantage of optical absorption and ultrasound detection that imparts higher resolution, rich contrast and elevated penetration depth. Unlike other imaging techniques, PAI does not use ionising radiation and is a better, cost-effective and healthier alternative to other imaging techniques. It offers greater specificity than conventional ultrasound imaging with the ability to detect haemoglobin, lipids, water and other light-absorbing chromophores. These properties of PAI have led to its extended applications in the biomedical field in the treatment of diseases such as cancer. This paper reviews how DNA probes have been used in PAI, the various techniques by which it has been modified, and their role in the process. We also focus on different nanocomposites containing DNA having PAI and photothermal therapy(PTT) properties for detection, diagnosis and therapy, its constituents and the role of DNA in it.


Assuntos
Neoplasias , Técnicas Fotoacústicas , Humanos , Técnicas Fotoacústicas/métodos , Fototerapia/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/terapia , Sondas de DNA
2.
Int Nano Lett ; 13(2): 93-115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36438713

RESUMO

Nanoparticles have aided in the development of nano-based sensors for diagnostic applications. However, use of nanoparticles in the development of sensing devices for multiple analyte detection is constrained due to their inability to detect several analytes with a single type of nanoparticle. The term "Janus particle" refers to micro or nanoscale particles that have been divided into sections or compartments, each of which has a distinct set of chemical or physical properties, producing multifunctional particles endowed with distinctive qualities. Furthermore, Janus particles have the ability to perform multiple functions within a single particle at the same time, with no interference from adjacent sections. This review focuses on the use of Janus particles in the fabrication of biosensors as well as in the investigation of various properties endowed by these Janus particles for their use as biosensors. It also discusses the various types of Janus particle-based biosensors that are currently available. Finally, the limitations of Janus particles in sensor technologies and their future scope have been discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...